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Linear Perturbations of Gauge Fields 
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It is shown that under certain weak conditions (the vanishing of the field strength 
along a family of  self-dual or anti-self-dual geodesic two-surfaces), in a curved 
or flat space-time, the linear perturbations of a given gauge field configuration 
can be expressed in terms of the solutions of  a single second-order linear partial 
differential equation for a matrix potential. The particular case of the self-dual 
gauge fields is treated in some detail. 

1. INTRODUCTION 

The fact that the Yang-Mills equations, which govern the gauge fields, 
like Einstein's field equations, are a coupled system of nonlinear partial 
differential equations is an obstacle to the analysis of the models of the 
fundamental interactions based on those fields. Hence, even though gauge 
fields interact with quantum matter and they must be quantized too, the 
study of the solutions of the classical Yang-Mills equations represents a 
valuable step in the understanding of the theory. 

Gauge fields are, from the geometrical point of view, similar to the 
gravitational field in the general theory of relativity. In both cases, by using 
the complex extension of space-time, it has been possible, under certain 
restrictions which have a well-defined geometrical meaning, to obtain many 
nontrivial results concerning restricted classes of solutions and to construct 
explicitly examples of such fields. 

For instance, the self-dual gauge fields, or the self-dual space-times, 
can be characterized by the fact that the field strength, or the curvature, 
respectively, vanishes along all the anti-self-dual surface elements, which 
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are totally null and necessarily complex. In a flat or self-dual space-time, 
the anti-self-dual surface elements form families, or congruences, of complex 
two-dimensional surfaces which are geodesic. Due to the existence of such 
surfaces the field equations can be reduced or translated to another mathe- 
matical structure [see, e.g., Yang (1977) and Ward (1977) for the case of 
gauge fields and Plebafiski (1975) and Penrose and Ward (1980) for the 
gravitational case]. 

A more general class consists of those fields such that the field strength, 
or the curvature, vanishes only along a single congruence of two-dimensional 
anti-self-dual geodesic surfaces. For this class, the field equations without 
sources reduce to a single nonlinear differential equation [Torres del Castillo 
(1985) in the case of gauge fields and Plebafiski and Robinson (1976), Finley 
and Plebafiski (1976), and Torres del Castillo (1983) in the gravitational 
case]; however, due to the necessity of employing complex coordinates and 
to the nonlinearity of the field equations, the problem remains of determining 
which solutions of these equations correspond to real fields. On the other 
hand, the (linear) perturbations of a given solution of these field equations 
do obey linear equations. Therefore, the real and imaginary parts of a 
complex perturbation represent real perturbations and, in this case, the 
formalism based on the complex extension of the space-time can be applied 
directly. In fact, in this way it is found that the perturbations of the 
algebraically special solutions of the Einsteifl vacuum field equations are 
determined by a single linear second-order differential equation for a com- 
plex potential function (Torres del Castillo, 1986)--a result previously 
obtained by other means (Chrzanowski, 1975; Wald, 1978; Kegeles and 
Cohen, 1979). 

In this paper, using the results given in Torres del Castillo (1985a), we 
show that, for an arbitrary gauge group, the perturbations of a solution of 
the source-free Yang-Mills equations such that its field strength vanishes 
along a congruence of two-dimensional totally null surfaces, suitably corre- 
lated with the curvature of the space-time, are given locally in terms of a 
matrix potential which fulfills a linear second-order differential equation. 
In the special case of the self-dual gauge fields in a fiat or self-dual 
space-time, we reformulate some results previously given which relate the 
linear perturbations with the solutions of a linear system whose integrability 
conditions amount to the self-duality of the background gauge field. In the 
derivation presented here we make use of complex coordinates induced by 
the totally null surfaces mentioned above and of null tetrads associated 
with them. However, the final results are given with respect to an arbitrary 
null tetrad. The spinor notation is used throughout this paper. [An excellent 
presentation of the spinor formalism can be found in, e.g., Pirani (1965). 
See also Plebafiski (1975).] 
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2. THE REDUCED FORM OF THE YANG-MILLS EQUATIONS 

In terms of the spinor notation, a spinor lA defines, at each point of 
the space-time where it does not vanish, a totally null subspace formed by 
the vectors of the form mBIA, with mu arbitrary. With the appropriate 
convention for the duality operation, the bivector corresponding to these 
subspaces, whose spinor components are IA1B, is anti-self-dual. The 
condition for these subspaces to be tangent to a family of two-dimensional 
surfaces is 

[AIBVcAIB = 0 (1) 

If equation (1) is satisfied and additionally 

laIBleCa~3eo = 0 (2) 

where Caado denotes the spinor components of the anti-self-dual part of 
the conformal curvature (Weyl spinor), then there exist (complex) coordin- 
ates qa, pa(A = 1, 2) in terms of which the space-time metric takes the form 

g = 2(o -2 dq A @ (dpA -t- QAB dq B) (3) 
s 

where & and QAB are complex functions, with QAB = QBA. The function & 
satisfies the condition 

lAVuc IA = lC IaoBa In & (4) 

(Torres del Castillo, 1983, 1984). For a space-time that satisfies the Einstein 
vacuum field equations, each of the equations (1) and (2) implies the other. 
By virtue of (2) the space-time is said to be algebraically special. 

The two-dimensional surfaces defined by la are given by dq A= 0 and 
the tangent vectors to them are spanned by O/Op a. From equation (3) it is 
clear that the metric vanishes on these surface, i.e., they are totally null 
and, as a consequence of (1), geodesic. 

As is shown in Torres del Castillo (1985), any solution of the source-free 
Yang-Mills equations such that 

lalaF,~ = 0 (5) 

where FAB denotes the spinor components of the anti-self-dual part of the 
field strength and where Ia satisfies equations (1) and (2), is given, in an 
arbitrary gauge, by 

A = A~ dx" = M - '  d M -  M-~(epa -OH/opA)M dq A (6) 

where e is an arbitrary matrix, which depends on qR only, M is a gauge- 
dependent matrix whose presence is necessary in order for A to take values 
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in the Lie algebra of the gauge group along all real directions in the 
space-time, and H is a potential matrix, which must fulfill the equation 

D a OAH+OAH OAH+[p A OAH - H ,  e] = v (7) 

where v is an arbitrary matrix, which depends on qR 0nly, and where we 
have used the abbreviations 

Oa=O/Op A, DA=O/OqA + QABo" (8) 

[all the spinor indices are raised and lowered according to the convention 
0a = eaBq jB, 6 ~ = eaB6a, and similarly for dotted indices]. 

The coordinates qA pA induce the complex null tetrad 

OAi = ~/20A, OA~ = "/2&2DA (9) 

which satisfies OAB " OCD = --2eaceBO. With respect to this tetrad the com- 
ponents of the potential A given in (6) are 

ABi = v/2M -1 oBM 
(10) 

AB~ = x/2~b Z{ M-1DB M - M - l (  epB - OBH )M} 

while the field strength components are given by 

Fii =0,  Fi~=2&2M- leM 

F~2 = 24)4M-1{p A Oe/Oq A + [H, e] + v}M (11) 

FAB = 24,2M-l(OAOBH)M 

Condition (5) [which in the tetrad (9) amounts to Fii = 0] means that 
for any pair of vectors tangent to the two-dimensional surfaces defined by 
IA, V*', and w ~, F,,~v'*w ~= O, or equivalently, that the connection defined 
by A restricted to these surfaces is flat. For a real field, condition (5) implies 
1AIBFa8 = 0, where FAB corresponds to the self-dual part of the field strength, 
and conversely. However, the self-dual part of the field strength generated 
by a solution of (7) may not satisfy a condition of the form IA1BFAB = O, 
but it can be more general. For instance, by taking e = v = 0 one gets FaB = 0, 
while FAB is completely arbitrary and the solutions of (7) yield all the 
self-dual gauge fields in a space-time that admits a solution of (1) and (2). 

3. L I N E A R  P E R T U R B A T I O N S  

Assuming now that H is a solution of equation (7) corresponding to 
a given real solution of the source-free Yang-Mills equations and that 
H + 6H also satisfies equation (7) to first order in 6H, one obtains, with e 
and v fixed, that 

DAOA 3H + [oAH -- ep A, OA 6H] + [e, 3H] = 0 
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By using equations (9)-(11) this equation for 6H can be written in the 
following gauge-covariant form, valid only for the tetrad (9): 

aA{aAiX+[AAi,X]}+[AA, aAiX+[AAi,X]]+[Fi2,x]=O (12) 

where X=--M-~(6H)M. Then, from equations (6) and (9)-(11) it follows 
that the perturbations of the field expressed in the basis (9) are 

1 
6A = ~ {0Ai X -~- [AAi , X]} dq A 

6Fii = 6Fi~ = 0, 3F~2 = - ~b2[Fi2, X] 
t~FAB = t~ 2{aAi(aBiX q-[ ABi, X]) q-E AAi, aBiX + [ ABi, X]]} 

(13) 

Equations (12) and (13) can be written in a fully covariant form, valid 
in any gauge and any null tetrad. These expressions, written in a compact 
and manifestly fully covariant form, are 

Y?c(a d? -2 Y? co go2t~lt~) to -- [F(~, ~bl#)Its] = 0 (14) 

and 

aABc = q5-2~' ~(,;b2~,ic Ic>) 

aFAB = - E F t ,  ~IB)ID] (15) 

where tp is a potential matrix, which takes the place o f x  [$ = ~ - 2 A - 1 , ) ( ,  in 
the notation of Torres del Castillo (1984)] and 7 denotes the covariant 
derivative with respect to both the Levi-Civita connection and the gauge 
f i e l d :  ~A/~ = VAI~q-[AAB, ]. These expressions can be obtained from (12) 
and (13) by means of the procedure given in Torres del Castillo (1984), or 
it can be verified that equations (14) and (15), when expressed in the tetrad 
(9) with 1a = t5~, reduce to (12) and (13). Due to equations (4) and (5), the 
left-hand side of (14) is proportional to IAlB. Therefore, equation (14) 
constitutes just one differential condition on ~, equivalent to (12). The 
combination ~blclo, which appears in (14) and (15), plays the role of a 
matrix Hertz potential. 

Equations (14) and (15) are very similar to those found for the gravita- 
tional perturbations of the algebraically special solutions of the Einstein 
vacuum field equations (Kegeles and Cohen, 1979; Tortes del Castillo, 
1986) and in the case where the fields are 1 x 1 matrices they reduce to (the 
complex conjugates of) the ones obtained for the electromagnetic perturba- 
tions (Wald, 1978; Kegeles and Cohen, 1979; Torres del Castillo, 1984, 
1985); in fact, except for the terms containing FAB, equations (14) and (15) 
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can be obtained from (the complex conjugates of) the corresponding 
equations for the electromagnetic perturbations, given explicitly in Wald 
(1978) and Kegeles and Cohen (1979), by replacing the partial derivatives 
O/Ox ~ by O/Ox ~" + [A~, ] ("minimal coupling rule"). 

The perturbations given by (15), in general, are not real. However, 
since we are considering linear perturbations, one can combine the solution 
given in (15) with its Hermitian conjugate in order to get real fields. If, for 
instance, the gauge group consists of unitary matrices, then the potential 
and the field strength must be skew-Hermitian matrices, which, in a null 
tetrad such that OA~ J = OBA , amounts to (ABe)* = -AC[J and (FAB)* = -FAa,  
where the dagger denotes the Hermitian adjoint. Thus, in that case, 

6ABe = & -27 ~( ~b2tble lt,) - ~-2~ c D. (t~2~-t/B io ) (16) 

where Is = IB, represents a real perturbation, with ~ being a solution of 
(14). If q~ is replaced by i6 in (16), another real perturbation is obtained, 
which can be regarded as derived from (16) by a duality rotation (cf. 
Chrzanowski, 1975; Wald, 1978), which makes sense in the linear approxi- 
mation. In general, the pertubation given by (16) will not satisfy the 
restriction (5) or any other of that form. Instead, it may be completely 
general, due to the superposition of the fields 8FAB and t$FAB given in (15). 

4. P E R T U R B A T I O N S  O F  SELF-DUAL FIELDS 

In a flat or self-dual space-time, a self-dual gauge field can be character- 
ized by the fact that, for every covariantly constant spinor ~rA, the linear 
system 

7r o(aco 7~ + Aco ~-) = 0 (17) 

where E is a matrix that depends parametrically on ~'a, is integrable (Ward, 
1977; Belavin and Zakharov, 1978; Chau Wang et al., 1981; Torres del 
Castillo, 1985). Similarly, the self-duality of the gauge field ACD implies 
the integrability of 

Tr~ cOO =- 'rrD(aCDO + [ AcD, th]) = 0 (18) 

as can be seen by applying orB7 c to equation (18), using the commutation 
relation 

7c<A~)~ =--[FAB, 4'] (19) 
In fact, if "~ satisfies (17) and T is a constant matrix, then qJ = ~ T ~  -1 is a 
solution of equation (18). 

Solutions of (18) also satisfy equation (14), i.e., each solution of 
equation (18) that can be constructed from those of equation (17) generates 
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a linear perturbation of the given self-dual gauge field. [See Chau Wang et 
al. (1982) for the case of flat space-time.] Indeed, if 1a and ma are covariantly 
constant spinors such that malA = 1 ,  then 

mAl~ - mi~l A = tS~ 

and from equation (18) we have 

~N mN I ~  cO~ = 7rN ls  m~ co ~0 

Since IA is assumed to be covariantly constant, from equation (4) it follows 
that 05 can be taken equal to one. Thus, taking into account that FAa = 0, 
the only nontrivial component of the left-hand side of equation (14), 
obtained bY contracting it with mam a, is mATC~ which is equal to 
(,n'MIM/,n'NmN)mATcAy~CO~Om ~ and vanishes by virtue of (19). 

5. CONCLUDING REMARKS 

The results presented here show a great similarity with those obtained 
in the gravitational case, where the study of the linear perturbations has 
been used in the analysis of the stability of certain solutions. 

An essential difference between the Yang-Mills fields and the gravita- 
tional field in Einstein's theory of gravity is that in the latter the connection 
is not the fundamental object of  the field, but it is assumed to be determined 
by the metric of the space-time. This fact implies that, for certain restricted 
classes of solutions, while the gravitational perturbances are derived from 
a scalar potential, those of  the Yang-Mills fields require a matrix potential. 

As has been pointed out by Trautman (1981), if one considers the 
connections on the bundle of linear frames, the introduction of a metric in 
the base manifold corresponds to a symmetry-breaking analogous to that 
produced by a Higgs field in the case of the Yang-Mills fields. Thus, it is 
to be expected that, with a suitable Higgs field, the symmetry-breaking 
corresponds to a reduction of the matrix potentials of the gauge fields or 
of their perturbations. 

An interesting problem, not considered here, is that of the 
inhomogeneous perturbations, where the perturbations of the fields would 
be related with the sources. 

R E F E R E N C E S  

Belavin, A. A., and Zakharov, V. E. (1978). Physics Letters, 73B, 53. 
Chau Wang, L.-L., Prasad, M. K., and Sinha, A. (1981). Physical Review D, 24, 1574. 
Chau Wang, L.-L., Ge, M.-L., and Wu, Y.-S. (1982). Physical Review D, 25, 1086. 



890 Tortes del Castillo 

Chrzanowski, P. L. (1975). Physical Review D, 11, 2042. 
Finley, III, J. D., and Plebafiski, J. F. (1976). Journal of Mathematical Physics, 17, 2207. 
Kegeles, L. S., and Cohen, J. M. (1979). Physical Review D, 19, 1641. 
Penrose, R., and Ward, R. S. (1980). In General Relativity and Gravitation, Vol. 2, A. Held, 

ed., Plenum Press, New York. 
Plebafiski, J. F. (1975). Journal of Mathematical Physics, 16, 2395. 
Plebafiski, J. F., and Robinson, I. (1976). Physical Review Letters, 37, 493. 
Pirani, F. A. E. (1965). In Lectures on General Relativity (1964 Brandeis Summer Institute), 

Vol. 1, S. Deser and K. W. Ford, eds., Prentice-Hall, Englewood Cliffs, New Jersey. 
Torres del Castillo, G. F. (1983). Journal of Mathematical Physics, 24, 590. 
Torres del Castillo, G. F. (1984). Journal of Mathematical Physics, 25, 342. 
Torres del Castillo, G. F. (1985). Journal of Mathematical Physics, 26, 836. 
Torres del Castillo, G. F. (1986). Journal of Mathematical Physics, 27, 1586. 
Trautman, A. (1981). Acta Physica Austriaca Supplentum, XXIII, 401. 
Wald, R. M. (1978). Physical Review Letters, 41, 203. 
Ward, R. S. (1977). Physics Letters, 61A, 81. 
Yang, C. N. (1977). Physical Review Letters, 38, 1377. 


